Welcoming Michael González-Durruthy to the group

Dr. Michael González-Durruthy was hired to work on the project entitled iDrugCF: Identification of New Drugs for Cystic Fibrosis. This project is financed by the Portuguese Science Foundation (FCT) to discover and develop novel molecules able to rescue and potentiate Read more ›

Welcoming Bruno Gonçalves to the group

Dr. Bruno Gonçalves was hired to work on the project entitled Multidrug Resistance Reversal in Cancer: Natural Compounds as P-glycoprotein and Breast Cancer Resistance Protein Modulators. This project is financed by the Portuguese Science Foundation (FCT) to discover and develop Read more ›

Structure-function relationships in ABCG2: insights from molecular dynamics simulations and molecular docking studies

Efflux pumps of the ATP-binding cassette transporters superfamily (ABC transporters) are frequently involved in the multidrug-resistance (MDR) phenomenon in cancer cells. Herein, we describe a new atomistic model for the MDR-related ABCG2 efflux pump, also named breast cancer resistance protein Read more ›

Scientific Reports: ABCG2 homology structure

The manuscript titled Structure-function relationships in ABCG2: insights from molecular dynamics simulations and molecular docking studies submitted for review to Scientific Reports exactly one month before the ABCG2 cryo-EM structure was deposited in Protein Data Bank was accepted, already revised Read more ›

About P-glycoprotein: a new drugable domain is emerging from structural data

P-glycoprotein (P-gp) has been considered an important molecular target in the reversal of multidrug resistance (MDR). As such, the development of P-gp modulators able to restore drug sensitivity in resistant cells is still considered one of the most promising strategies Read more ›

Do Drugs Have Access to the P-Glycoprotein Drug-Binding Pocket through Gates?

The P-glycoprotein efflux mechanism is being studied since its identification as a leading protagonist in multidrug resistance. Recently, it was suggested that drugs enter the drug-binding pocket (DBP) through gates located between the transmembrane domains. For both a substrate and Read more ›

Do adsorbed drugs onto P-glycoprotein influence its efflux capability?

The membrane biophysical aspects by which multidrug resistance (MDR) relate to the ABC transporter function still remain largely unknown. Notwithstanding the central role that efflux pumps like P-glycoprotein have in MDR onset, experimental studies classified additionally the lipid micro-environment where Read more ›

Molecular Dynamics Study of the Gold/Ionic Liquids Interface

The results of a systematic molecular dynamics study of the interfacial structure between the gold (100) surface and two room-temperature ionic liquids, namely, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]) and 1-butyl-3-methylimadazolium bis(trifluoromethylsulfonyl)imide ([BMIm][NTf2]), are herein reported. It is found that near an uncharged Read more ›

P-glycoprotein and membrane roles in multidrug resistance

Multidrug-resistance (MDR) phenomena are a worldwide health concern. ATP-binding cassette efflux pumps as P-glycoprotein have been thoroughly studied in a frantic run to develop new efflux modulators capable to reverse MDR phenotypes. The study of efflux pumps has provided some Read more ›

Effect of replacing [NTf2] by [PF6] anion on the [BMIm][NTf2] ionic liquid confined by gold

The effect of replacing bis(trifluoromethylsulphonyl)imide ([NTf2]) by hexafluorophosphate ([PF6]) in room temperature ionic liquid (IL) 1-butyl-3-methylimidazolium bis(trifluoromethylsulphonyl)imide ([BMIm][NTf2]) confined between two gold interfaces is herein reported through molecular dynamics simulations using all-atom non-polarisable force-fields. Five systems were studied ranging from Read more ›

Indolo[3,2-c]quinoline G-Quadruplex Stabilizers: a Structural Analysis of Binding to the Human Telomeric G-Quadruplex

A library of 5-methylindolo[3,2-c]quinolones (IQc) with various substitution patterns of alkyldiamine side chains were evaluated for G-quadruplex (G4) binding mode and efficiency. Fluorescence resonance energy transfer melting assays showed that IQcs with a positive charge in the heteroaromatic nucleus and Read more ›

Reversing cancer multidrug resistance: insights into the efflux by ABC transports from in silico studies

One of the greatest threats to cancer treatment is the development, by some tumors, of resistance to the pharmacological action of several structurally unrelated cytotoxic agents—multidrug resistance (MDR). As P-glycoprotein (P-gp) is one of the most studied ATP-dependent efflux pumps Read more ›

Assessing the Stabilization of P-Glycoprotein’s Nucleotide- Binding Domains by the Linker, Using Molecular Dynamics

This paper focuses on the importance of the intermediate linker sequence for the stabilization of the cytoplasmic portion of murine P-glycoprotein, an ABC transporter involved in Multidrug Resistance (MDR) in cancer. Three putative protein-protein interaction areas were predicted to exist, Read more ›

Insights on P-Glycoprotein’s Efflux Mechanism Obtained by Molecular Dynamics Simulations

P-Glycoprotein (P-gp) is often involved in multidrug resistance (MDR) to the pharmacological action of a wide number of anticancer agents. In this article, a series of molecular dynamics simulations of murine’s P-gp were developed, elucidating the importance of the lipid Read more ›

Properties and behaviour of tetracyclic allopsoralen derivatives inside a DPPC lipid bilayer model

Allopsoralens are angular psoralen derivatives presenting advantages over the parent compound because of monofunctional DNA-photobinding and consequent lower toxicity. Allopsoralen molecules with three different substituents and different protonation states were studied using the molecular dynamics technique. The location of these Read more ›