Categories

Archive

Probing the Azaaurone Scaffold against the Hepatic and Erythrocytic Stages of Malaria Parasites

The potential of azaaurones as dual-stage antimalarial agents was investigated by assessing the effect of a small library of azaaurones on the inhibition of liver and intraerythrocytic lifecycle stages of the malaria parasite. The whole series was screened against the Read more ›

Probing the aurone scaffold against Plasmodium falciparum: Design, synthesis and antimalarial activity

A library comprising 44 diversely substituted aurones derivatives was synthesized by straightforward aldol condensation reactions of benzofuranones and the appropriately substituted benzaldehydes. Microwave enhanced synthesis using palladium catalyzed protocols was introduced as a powerful strategy for extending the chemical space Read more ›

Flavones as isosteres of 4(1H)-quinolones: Discovery of ligand efficient and dual stage antimalarial lead compounds

Malaria is responsible for nearly one million deaths annually, and the increasing prevalence of multi-resistant strains of Plasmodium falciparum poses a great challenge to controlling the disease. A diverse set of flavones, isosteric to 4(1H)-quinolones, were prepared and profiled for Read more ›

Exploring the Molecular Basis of Qo bc1 Complex Inhibitors Activity to Find Novel Antimalarials Hits

Cytochrome bc1 complex is a crucial element in the mitochondrial respiratory chain, being indispensable for the survival of several species of Plasmodia that cause malaria and, Qo bc1 Complex Inhibitorstherefore, it is a promising target for antimalarial drug development. We Read more ›

Identification of new antimalarial leads by use of virtual screening against cytochrome bc1

Cytochrome bc1 is a validated drug target in malaria parasites. The spread of Plasmodium falciparum strains resistant to multiple antimalarials emphasizes the urgent need for new Identification of new antimalarial leads by use of virtual screening against cytochrome bc1drugs. We Read more ›

A quantum mechanical study of novel potential inhibitors of cytochrome bc1 as antimalarial compounds

Cytochrome bc1 is a validated drug target of Plasmodium falciparum, the parasite that causes the most lethal form of malaria. The inhibition of cytochrome bc1 leads to the shutdown of the mitochondrial metabolism and the consequent arrest of pyrimidine biosynthesis Read more ›

Incorporation of Basic Side Chains into Cryptolepine Scaffold: Structure−Antimalarial Activity Relationships and Mechanistic Studies

The synthesis of cryptolepine derivatives containing basic side-chains at the C-11 position and their evaluations for antiplasmodial and cytotoxicity properties are reported. Propyl, butyl, and cycloalkyl diamine side chains significantly increased activity against chloroquine-resistant Plasmodium falciparum strains while reducing cytotoxicity Read more ›

Synthesis and evaluation of vinyl sulfones as caspase-3 inhibitors. A structure–activity study

The first structure–activity relationship study of vinyl sulfones as caspase-3 inhibitors is reported. A series of 12 vinyl sulfones was synthesized and evaluated for two downstream caspases (caspases-3 and -7). Dipeptidyl derivatives were significantly superior to their counterparts containing only Asp Read more ›

Design, synthesis and structure–activity relationships of (1H-pyridin-4-ylidene)amines as potential antimalarials

(1H-Pyridin-4-ylidene)amines containing lipophilic side chains at the imine nitrogen atom were prepared as potential clopidol isosteres in the development of antimalarials. Their antiplasmodial activity was evaluated in vitro against the Plasmodium falciparum W2 (chloroquine-resistant) and FCR3 (atovaquone-resistant) strains. The most Read more ›