Categories

Archive

Terpenoids from Euphorbia pedroi as Multidrug-Resistance Reversers

The phytochemical study of Euphorbia pedroi led to the isolation of a new tetracyclic triterpenoid with an unusual spiro scaffold, spiropedroxodiol (1), along with seven known terpenoids (2–8). Aiming at obtaining compounds with improved multidrug-resistance (MDR) reversal activity, compound 8, Read more ›

Structure-function relationships in ABCG2: insights from molecular dynamics simulations and molecular docking studies

Efflux pumps of the ATP-binding cassette transporters superfamily (ABC transporters) are frequently involved in the multidrug-resistance (MDR) phenomenon in cancer cells. Herein, we describe a new atomistic model for the MDR-related ABCG2 efflux pump, also named breast cancer resistance protein Read more ›

About P-glycoprotein: a new drugable domain is emerging from structural data

P-glycoprotein (P-gp) has been considered an important molecular target in the reversal of multidrug resistance (MDR). As such, the development of P-gp modulators able to restore drug sensitivity in resistant cells is still considered one of the most promising strategies Read more ›

Reversing cancer multidrug resistance: insights into the efflux by ABC transports from in silico studies

One of the greatest threats to cancer treatment is the development, by some tumors, of resistance to the pharmacological action of several structurally unrelated cytotoxic agents—multidrug resistance (MDR). As P-glycoprotein (P-gp) is one of the most studied ATP-dependent efflux pumps Read more ›

Molecular Docking Characterizes Substrate-Binding Sites and Efflux Modulation Mechanisms within P-Glycoprotein

P-Glycoprotein (Pgp) is one of the best characterized ABC transporters, often involved in the multidrug-resistance phenotype overexpressed by several cancer cell lines. Experimental studies contributed to important knowledge concerning substrate polyspecificity, efflux mechanism, and drug-binding sites. This information is, however, Read more ›